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Nucleation and Boiling Near the Gas-Liquid
Critical Point1

A. Onuki2

Nucleation near the gas-liquid critical point depends sensitively on whether the
pressure or the volume is fixed. We consider near-critical fluids close to the
coexistence curve, (i) Upon decompression to a constant pressure with a fixed
boundary temperature, bulk nucleation can well be induced from a gas state,
whereas from a liquid state boiling is easily triggered in the thermal diffusion
layer near the boundary. In this case, bulk nucleation in a metastable gas is
described by the classical Lifshitz-Slyozov theory, (ii) Upon cooling of the
boundary temperature under the fixed-volume condition, bulk nucleation can be
realized in a liquid and a modified Lifshitz-Slyozov theory follows. However, if
a gas is cooled from the boundary at a fixed volume, liquid droplets readily
appear in the thermal diffusion layer, apparently suggesting no metastability in
a gas in agreement with previous experiments, (iii) On the other hand, if a
liquid is heated at the boundary wall, boiling readily occurs both at a fixed
volume and at a fixed pressure.
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1. INTRODUCTION

Thermal relaxation in fluids near the gas-liquid critical point is crucially
dependent on whether the pressure or the volume of the container is fixed
[1,2]. Under the latter condition, if the boundary temperature is changed,
pressure variations propagate as sound waves throughout the container
and cause almost instantaneous adiabatic temperature changes (piston
effect). The thermal equilibration achieved by this adiabatic mechanism is
increasingly important as the critical point is approached. Interestingly,
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thermal relaxation is more complicated in two-phase coexistence, where
slow transport of heat and mass takes place through the interface [3]. This
indicates that adiabatic effects should also be crucially important in phase
separation processes near the gas-liquid critical point, though such effects
have not attracted enough attention.

Nucleation near the gas-liquid critical point was first studied by
Langer and Turski [4], who assumed a constant pressure (isobaric nuclea-
tion) in one-component fluids. Very recently we have examined nucleation
near the gas-liquid critical point in more detail both under a constant
pressure and in a fixed volume [ 5 ]. We assume that the boundary wall of
the container is kept isothermal for t > 0 after the interior region is brought
into a metastable state at t = 0. Here there appears a thermal diffusion layer
with thickness

where D is the thermal diffusion constant. The cell length L is supposed to
be sufficiently long that appreciable droplets of the new phase emerge while
L»l. We shall see that bulk nucleation in the interior region may be
realized when a gas is decompressed at t = 0 to a new fixed pressure for
t > 0 or when a liquid is cooled from the boundary with a fixed volume. In
other cases droplets of the new phase appear in the thermal diffusion layer
near the boundary wall.

Unfortunately, nucleation experiments on one-componemt fluids near
the gas-liquid critical point have not been abundant [6, 7]. Most phase
separation experiments have been on fluid binary mixtures near the con-
solute critical point using a pressure quench method, by which the tem-
perature is changed by ( dT /dp ) s x <sp and the critical temperature by
(dTc/dp) dp adiabatically and hence instantaneously after a pressure change
dp [8-10]. As an interesting adiabatic effect, Donley and Langer [11] have
recently found a large adiabatic heating in spinodal decomposition of fluid
binary mixtures at a constant pressure. It arises from release of the internal
energy upon local phase separation and is closely related to the mechanism
of the critical acoustic anomaly in binary mixtures [12],

At the present stage of research, we have not yet gained satisfactory
understanding of these phase separation phenomena occurring under time-
dependent pressure and/or temperature in one- and two-component fluids.
Note that most theories so far have assumed isobaric and isothermal con-
ditions in the course of phase separation. This paper treats one-component
fluids near the coexistence curve and examines phase separation far from
the boundary (bulk nucleation) and within the thermal diffusion layer
(boiling or condensation).



where a is the surface tension.

Hereafter 6=\ (or — 1) if phase 2 is a gas (or liquid) phase. The derivative
(dT/dp)cx is the slope of the coexistence curve. The length d in Eq. (2) is
of order E/6 in terms of the thermal correlation length £ on the coexistence
curve.

In early-stage nucleation without appreciable droplets, the nucleation
rate J is the probability of finding droplets with R larger than the initial
critical radius Rc(0) = 2d/A(o) in a unit volume and in a unit time. The
classical nucleation theory [4, 14] predicts that J is written in terms of
J(0) as

where ys = Cp/Cv is the specific heat ratio growing as (1 — T / T C ) X - r as
T- rc, with y (= l .25) and a (= 0.1) being the usual critical exponents.
h(t) represents the distance of medium 2 from the coexistence curve,

where D is the thermal diffusivity of phase 2 and A(t) the effective dimen-
sionless supersaturation. Phase 2 is metastable for 0 < A(t) << 1, unstable for
A ( t ) > 1 , and is stable for d ( t ) < 0. Near the critical point it is expressed as
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2. NUCLEATION FORMULAE

Let a metastable medium of phase 2 be characterized by the tem-
perature deviation dT^(t) and the pressure deviation sp«,(t)• They are
measured from a reference state on the coexistence curve and are generally
time dependent. Latent heat is absorbed by a growing gas droplet and is
released by a growing liquid droplet. The thermal diffusion around the
interface gives rise to the evolution equation of the droplet radius R(t) in
the standard form [13],
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3. THE ISOBARIC CASE

3.1. Pressure Change

We assume a homogeneous near-critical fluid in a cell with tempera-
ture T0 and a pressure p0 in the time region t < 0. If the system is not on
the coexistence curve and ST0 = T0— Tcx(p0) is nonvanishing, the original
supersaturation becomes

We assume that A(t<Q) is a negative number or a very small positive
number to avoid any droplet formation before the experiment. We then
change the pressure in a stepwise manner at t = 0 from p0 to p0 + dp^, and
keep it constant at later times. The temperature far from the boundary will
be adiabatically changed immediately by AT=(dT/dp)s5px>. If the bound-
ary temperature is kept at T0, the temperature profile near the boundary
is of the form,

where jc is the distance from the boundary wall and erf(z) = (2/^/n) \z
0dp

exp(—p2) is the error function tending to 1 for z » 1. This is the solution
of the one-dimensional heat diffusion equation in the semiinfinite case. The
interior temperature is higher (or lower) than in the bounder layer for
compression 6pao>0 (or decompression dpao<0). The supersaturation
given by Eq. (3) is then dependent on x and t as

where Am = A(t <0) — AT/6(TC— Tcx) is the supersaturation in the interior
region. The interior region can be metastable only for expansion or
fSpoo < 0. However, A(x, t) can be very large in the thermal diffusion layer.
This is discussed for the two cases, 9 = ± 1, separately.

3.1.1. The Gas Case (0=1)

For sp^ < 0 the supersaturation is negative in the layer obviously
because the boundary temperature is fixed. Therefore, nucleation experi-
ments can well be performed in the bulk region by decompression. Even
when a wetting layer of a liquid phase is present at the boundary, it does not
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grow thicker. Upon compression, dp^ > 0; on the other hand, the boundary
becomes cooler than in the interior region and the supersaturation can
assume a large positive value within the layer. This indicates liquid conden-
sation near the boundary.

3.1.2. The Liquid Case (0= -1)

For Spx < 0 the boundary temperature is higher than in the interior
region and the supersaturation can be positive and very large in the bound-
ary layer, leading to boiling within the layer. If A(t < 0 ) = O , the threshold
of boiling is very low and is given by

On the contrary, upon compression, S p a > 0 , the entire spatial region
remains stable.

3.2. Bulk Nucleation in a Metastable Gas

We discuss bulk nucleation further in the gas case below. Our theory
will be valid outside the layer (x > / = (Dt)1/2). Its thickness l is supposed
to be much smaller than the cell dimension L and droplet growth occurs
before the macroscopic time L2/D. Namely, the so-called completion time
[14] of nucleation is assumed to be shorter than L2/D. After some calcula-
tions the droplet volume fraction o(t) satisfies the conservation law [5],

The initial supersaturation A(0) is the bulk value just after the pressure
change,

Now Eqs. (2) and (10) coincide with the original Lifshitz-Slyozov
equations [13]. Thus, as the droplets grow, phase 2 slowly approaches the
coexistence curve as

Near the critical point we obtain

The factor ys -1/2 greatly reduces the above quantity near the critical point.
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4. THE CONSTANT-VOLUME CASE

4.1. Change of Boundary Temperature and the Piston Effect

We assume that a fluid near the critical point has a fixed total volume
v0 and is in an equilibrium state on the coexistence curve at a given
pressure p0, whose temperature T0 is equal to the coexistence temperature
TCX(PQ). This state will be chosen as the reference state. The initial devia-
tion ST0= r0 — Tm(p0) can be nonvanishing in experiments, but its effect
is only to shift the initial supersaturation by A( t<0) . We then slightly
change the boundary temperature at t — 0 and fix it at later times as

In the subsequent relaxation process the thermal diffusion layer plays the
role of an efficient piston, giving rise to a nearly homogeneous pressure and
temperature on a fast time scale t1,

where L is the system length and ys is the specific heat ratio. For t>tl the
supersaturation tends to g( — T1)/(T c— TCx) far from the boundary, but it
can vary rapidly within the thermal diffusion layer as [5]

The inhomogeneity of A(x, t) gives rise to important consequences in
experiments.

4.1.1. The Liquid Case ( o=- l )

If a liquid phase is cooled from the boundary (namely, Tt < 0), A(x, t)
becomes negative within the thermal diffusion layer in the early time
region, t<ys,t1. However, for t » ystl , this inhomogeneity becomes negli-
gible. Fortunately in this case, controlled nucleation experiments may well
be performed. That is, for t » tl, a nearly homogeneous metastable phase
2 is prepared in the bulk region, where S T m ( 0 ) = T l and spa(()) ^
(dp/dT)p T1 ^ (dp/dT)s T1. On the contrary, if a liquid is slightly heated
( T l > 0 ) above the coexistence curve, the thermal diffusion layer can
become metastable or even unstable in the time region t<ystl, which can
lead to boiling. For t ~ tl and x =0, A(x, t) attains a maximum,
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Therefore, if Amax> 1 and

boiling should be induced in the narrow spatial region x < (Dt2)l/2 ~ L/yl s/2

transiently in the time region t<t2.

4.1.2. The Gas Case (0=1)

Upon cooling A(x, t) attains a large value within the thermal diffusion
layer. Its maximum Amax is again given by Eq. (17). This means that phase
separation starts to take place within the thermal diffusion layer for t>tl

except for very small \Tl \ ( << (Tc— Tc x ) /y1 \ 2 ) . Under realistic experimental
conditions a liquid layer will appear to wet the boundary and no
appreciable metastability of a gas phase will be detected. This conclusion
is consistent with the experiment at a fixed volume by Dahl and Moldover
[6], who observed no metastability in gas states (p<pc ) and expected
preferential wetting of a liquid layer at the wall as its physical origin. In
addition, upon heating, the gas phase is always stable everywhere in the cell.

4.2. Bulk Nucleation in a Metastable Liquid

Hereafter, we examine the effect of a nonvanishing volume fraction
o ( t ) of gas droplets in a metastable liquid in the adiabatic nucleation pro-
cess. We examine the effects of droplet growth outside the thermal diffusion
layer, so we are requiring /Dt «L. Again, the completion time [14] is
assumed to be shorter than L2/D. With emergence of gas droplets the mass
conservation yields the average density deviation ( 6 p ( t ) > in phase 2 (or
outside the droplets) in the form, < s p ( t ) > =(Ap) o(t), where Ap = p2 — p1
and the averaged spatial region includes the thermal diffusion layer. This
density change causes adiabatic changes throughout the cell. In other
words, the droplets are acting as small pistons. We note that the density
change due to the droplet formation is almost homogeneous on spatial
scales much longer than the droplet radius and is smaller in the thermal
diffusion layer than in the interior region. Therefore, the density change in
the interior region in phase 2 is almost given by

where [sp]in is the adiabatic interior density change (oc T1) without
droplets. We then note that the average entropy deviation Ss(t) in phase 2
outside the thermal diffusion layer is of the form
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We have thus obtained the interior mean deviations, 5p(t) and Ss(t), to
first order in either Tl or o ( t ) . The average pressure and temperature devia-
tions sp oo(t) and STx(t) in phase 2 are then related to Sp(t) and Ss(t) via
the usual thermodynamic relations. The supersaturation A(t) is calculated as

The coefficient A is expressed in terms of thermodynamic derivatives in
phase 2 and is close to 2 near the critical point.

Now Eqs. (2) and (21) constitute a closed set of dynamic equations.
We may use the original Lifshitz-Slyozov results simply by rescaling,
2(t) = A(t)/A, d=d/A, and 5 = DA. We can confirm that in later stages,
dDt»Rc(Q)3, Rc(t), and A(t) are independent of A and A(t) behaves as
Eq. (12). For the convenience of experimentalists we write zf(0) taking
account of A(t < 0),

The second term in the brackets arises when the temperature T0 before
cooling deviates from the coexistence temperature Tcx = T C x (P 0 ) . The tem-
perature and pressure deviations depend on o ( t ) as

where ST0=T0-TCx and STa(O) = Tl+ST0. We should compare Eqs. (4)
and (13), which show that the temperature variation in the present
adiabatic case is much larger than in the isobaric case by y1/2. Note that
the variations of STx(t) and S p a ( t ) almost cancel in A(t) in the adiabatic
case because they move nearly in the parallel direction of the coexistence
curve in the p-T phase diagram.

Here we should not forget the condition t < L we have assumed. At
later times, t ^ L2/D, the fluid tends to an equilibrium state which is equi-
librated at the boundary temperature Tb. Thus, the interior mean tem-
perature first approaches to the boundary temperature on the time scale of
?! due to the piston effect, then increases as Eq. (24) with droplet growth,
and finally, returns to the boundary temperature for t > L2/D.

5. SUMMARY

We have shown that adiabatic temperature and pressure changes
are crucially important in nucleation experiments. Dahl and Moldover's
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experiment [6] was performed by cooling a liquid from the boundary in a
fixed volume. There, the piston effect supercooled the interior region and
the adiabatic nucleation discussed in Section 4 proceeded. More systematic
experiments are strongly needed under both fixed volume and fixed
pressure conditions. Our simple calculation of the supersaturation A(x, t)
near the boundary shows that boiling can be triggered easily near the criti-
cal point due to large thermal expansion when the boundary temperature
is slightly lower than that in the interior liquid region. To describe such
boiling phenomena we should also take into account wetting of a liquid on
a solid wall [14]. Controlled experiments of boiling near the critical point
seem to be promising.

In this paper the dominant heat source far from the boundary is the
latent heat produced or absorbed at the interfaces of growing droplets. In
adiabatic spinodal decomposition, furthermore, we cannot neglect heat
release in its initial stage because the internal energy changes upon local
phase separation [11]. Relatively small heat release will also occur in late
stages due to the decrease in the interface area with coarsening.
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